Two New Parameters Based on Distances in a Receiver Operating Characteristic Chart for the Selection of Classification Models

نویسندگان

  • Alfonso Pérez-Garrido
  • Aliuska Morales Helguera
  • Fernanda Borges
  • M. Natália D. S. Cordeiro
  • Virginia Rivero
  • Amalio Garrido Escudero
چکیده

There are several indices that provide an indication of different types on the performance of QSAR classification models, being the area under a Receiver Operating Characteristic (ROC) curve still the most powerful test to overall assess such performance. All ROC related parameters can be calculated for both the training and test sets, but, nevertheless, neither of them constitutes an absolute indicator of the classification performance by themselves. Moreover, one of the biggest drawbacks is the computing time needed to obtain the area under the ROC curve, which naturally slows down any calculation algorithm. The present study proposes two new parameters based on distances in a ROC curve for the selection of classification models with an appropriate balance in both training and test sets, namely the following: the ROC graph Euclidean distance (ROCED) and the ROC graph Euclidean distance corrected with Fitness Function (FIT(λ)) (ROCFIT). The behavior of these indices was observed through the study on the mutagenicity for four genotoxicity end points of a number of nonaromatic halogenated derivatives. It was found that the ROCED parameter gets a better balance between sensitivity and specificity for both the training and prediction sets than other indices such as the Matthews correlation coefficient, the Wilk's lambda, or parameters like the area under the ROC curve. However, when the ROCED parameter was used, the follow-on linear discriminant models showed the lower statistical significance. But the other parameter, ROCFIT, maintains the ROCED capabilities while improving the significance of the models due to the inclusion of FIT(λ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of adjusted-receiver operating characteristic curve analysis in combination of biomarkers for early detection of gestational diabetes mellitus

Introduction: In medical diagnostic field, evaluation of diagnostic accuracy of biomarkers or tests has always been a matter of concern. In some situations, one biomarker alone may not be sufficiently sensitive and specific for prediction of a disease. However, combining multiple biomarkers may lead to better diagnostic.  The aim of this study was to assess the performance of combination of bio...

متن کامل

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation

This review provides the basic principle and rational for ROC analysis of rating and continuous diagnostic test results versus a gold standard. Derived indexes of accuracy, in particular area under the curve (AUC) has a meaningful interpretation for disease classification from healthy subjects. The methods of estimate of AUC and its testing in single diagnostic test and also comparative studies...

متن کامل

A Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection

K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...

متن کامل

Automatic Classification of Benign And Malignant Liver Tumors In Ultrasound Images

Introduction: Differentiation of benign and malignant liver tumors is very important for finding appropriate treatment procedure. Human eyes sometime are not able to diagnose the type of liver tumor. Texture analysis is considered as a suitable method to increase the diagnostic power of medical images. In this study texture analysis is employed in order to classification of ben...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 51 10  شماره 

صفحات  -

تاریخ انتشار 2011